Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Chem Lett ; : 1-41, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37362012

RESUMO

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 µg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

2.
J Biomol Struct Dyn ; 41(13): 6203-6218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35904027

RESUMO

Diabetes mellitus (DM) is a global chronic disease characterized by hyperglycemia and insulin resistance. The unsavory severe gastrointestinal side-effects of synthetic drugs to regulate hyperglycemia have warranted the search for alternative treatments to inhibit the carbohydrate digestive enzymes (e.g. α-amylase and α-glucosidase). Certain phytochemicals recently captured the scientific community's attention as carbohydrate digestive enzyme inhibitors due to their low toxicity and high efficacy, specifically the Withanolides-loaded extract of Withania somnifera. That said, the present study evaluated in silico the efficacy of Withanolide A in targeting both α-amylase and α-glucosidase in comparison to the synthetic drug Acarbose. Protein-ligand interactions, binding affinity, and stability were characterized using pharmacological profiling, high-end molecular docking, and molecular-dynamic simulation. Withanolide A inhibited the activity of α-glucosidase and α-amylase better, exhibiting good pharmacokinetic properties, absorption, and metabolism. Also, Withanolide A was minimally toxic, with higher bioavailability. Interestingly, Withanolide A bonded well to the active site of α-amylase and α-glucosidase, yielding the lowest binding free energy of -82.144 ± 10.671 kcal/mol and -102.1043 ± 11.231 kcal/mol compared to the Acarbose-enzyme complexes (-63.220 ± 13.283 kcal/mol and -82.148 ± 10.671 kcal/mol). Hence, the findings supported the therapeutic potential of Withanolide A as α-amylase and α-glucosidase inhibitor for DM treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Acarbose/farmacologia , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...